Common Fixed Point Theorem in Fuzzy 2-Metric Space Using Implicit Relation

Rajesh Tokse ${ }^{*}$, Sanjay Choudhari** and Kamal Wadhwa**
*Department of Mathematics, Corporate Institute of Research \& Technology, Bhopal, (M.P), India
**Department of Mathematics, Govt. Narmada P.G. College, Hoshangabad, (MP), India.

(Corresponding author Rajesh Tokse)
(Received 05 April, 2014, Accepted 09 May, 2014)

Abstract

In this paper, we prove some common fixed point theorems for weak** commuting mappings in fuzzy 2-metric space without continuity condition.

I. INTRODUCTION

The idea of fuzzy metric space was introduced by Kramosil and Michalek [4] which was, later on, modified by George and Veeramani [2]. Many authors like Jungck and Rohades [3], Vasuki [12], Singh and Jain [11] used the concept of R-weakly commuting mappings and weak-compatible mappings to prove fixed point theorems in fuzzy metric spaces. The notion of weakly commuting introduced by Seesa [9] was improved by Pathak [5] by defining weak* commuting and weak**commuting mappings in metric spaces and prove some fixed point theorem.

Recently Singh and Jain [11], prove a unique common fixed point theorem in fuzzy metric space for four mappings with implicit relations including continuity condition. In this paper, with the concepts of weak** commuting, we prove some common fixed point theorems in fuzzy 2-metric space by using implicit relation without continuity condition.

II. PRELIMINARIES

In this section we start some definitions and known results which will be used in the proof of main result.

Definition 2.1. The 3-tuple ($\mathrm{X}, \mathrm{M},{ }^{*}$) is called a fuzzy 2-metric space if X is an arbitrary nonempty set,* is a continuous t-norm and M is a fuzzy set in $X^{3} \times[0, \infty)$ satisfying the following conditions, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$ and $\mathrm{t}>0$:
(FM-1) $\quad \mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})>0$,
(FM-2) $\quad \mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=1$ iff at least two out of three Points are equal,

$$
\begin{aligned}
&(\text { FM- } 3) \quad M(x, y z, t)=M(x, z, y, t) \\
&=M(y, z, x, t) \\
&(\text { FM-4) } \quad M\left(x, y, z, t_{1}+t_{2}+t_{3}\right) \\
& \geq M\left(x, y, u, t_{1}\right) * M\left(x, u, z, t_{2}\right) \\
& * M\left(u, y, z, t_{3}\right), \text { for } t_{i}>0
\end{aligned}
$$

(FM-5) $\quad \mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z} \cdot):(0, \infty) \rightarrow[0,1]$ is left continuous,
(FM-6) $\quad \lim _{t \rightarrow \infty} \mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=1$.
Definition 2.2. A pair (A, S) of self maps of a fuzzy 2 -metric space $\left(\mathrm{X}, \mathrm{M},{ }^{*}\right)$ is said to be weak** commuting if $A(X) \subset S(X)$ and for all

$\mathrm{x} \in \mathrm{X}$,

$$
\begin{aligned}
\mathrm{M}\left(\mathrm{~S}^{2} A^{2} v, A^{2} S^{2} v, z, t\right) & \geq \mathrm{M}\left(\mathrm{~S}^{2} A v, A^{2} S v, z, t\right) \\
& \geq \mathrm{M}\left(\mathrm{SA}^{2} v, A S^{2} v, z, t\right) \\
& \geq \mathrm{M}\left(\mathrm{SAAv}^{2} \mathrm{ASv}, \mathrm{z}, \mathrm{t}\right) \\
& \geq \mathrm{M}\left(\mathrm{~S}^{2} v, A^{2} v, z, t\right) .
\end{aligned}
$$

If $A^{2}=A$ and $S^{2}=S$ then the weak** commutative reduces to weak commutative.
2.3. A class of implicit function: Let Φ be the set of all real continuous functions $F:\left(R^{+}\right)^{5} \rightarrow R$, non decreasing in the first argument satisfying the following conditions:
(a) For $u, v \geq 0, F(u, v, u, v, 1) \geq 0$ implies that $u \geq v$.
(b) $\mathrm{F}(\mathrm{u}, 1,1, \mathrm{u}, 1) \geq 0$ or $\mathrm{F}(\mathrm{u}, \mathrm{u}, \mathrm{u}, 1, \mathrm{u}) \geq 0$ or $F(u, 1, u, 1, u) \geq 0$ implies that $u \geq 1$.

Example:

Define $F\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right)=20 t_{1}-18 t_{2}+10 t_{3}-12$ $\mathrm{t}_{4}-\mathrm{t}_{5}+1$.

Lemma 2.4. If for all $x, y \in X, t>0$ and 0 $<k<1, M(x, y, k t) \geq M(x, y, t)$, then $x=y$.

Lemma 2.5 Let $\left\{y_{n}\right\}$ be a sequence in fuzzy 2-metric space ($\mathrm{X}, \mathrm{M},{ }^{*}$) with the condition FM-6.If there exists $\mathrm{k} \in(0,1)$ such that $\mathrm{M}\left(\mathrm{y}_{\mathrm{n}}\right.$, $\left.y_{n+1}, z, k t\right) \geq M\left(y_{n}, y_{n+1}, z, t\right)$, for all $t>0$ and $\mathrm{n} \in \mathrm{N}$, then $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ is a Cauchy sequence in X .

III. MAIN RESULTS

Theorem 3. Let A, B, T and S be self mappings on a complete fuzzy 2 -metric space ($\mathrm{X}, \mathrm{M},{ }^{*}$) satisfying the following
(i) $\mathrm{A}(\mathrm{X}) \subset \mathrm{T}(\mathrm{X}), \mathrm{B}(\mathrm{X}) \subset \mathrm{S}(\mathrm{X})$,
(ii) The pairs (A, S) and (B, T) are weak** commutative.
(iii) $\mathrm{T}(\mathrm{X})$ and $\mathrm{S}(\mathrm{X})$ are complete
(iv) For some $\mathrm{F} \in \Phi$, there exists $\mathrm{k} \in(0,1)$ such that for all $x, y, z \in X$ and $t>0$,
$F\left\{M\left(A^{2} x, B^{2} y, z, k t\right), M\left(T^{2} y, S^{2} x, z, t\right)\right.$, $M\left(A^{2} x, T^{2} y, z, t\right), M\left(B^{2} y, T^{2} y, z, k t\right)$,
$\left.\mathrm{M}\left(\mathrm{T}^{2} \mathrm{y}, \mathrm{A}^{2} \mathrm{x}, \mathrm{z}, \mathrm{t}\right)\right\} \geq 0$
Then $\mathrm{A}, \mathrm{B}, \mathrm{T}$ and S have a unique common fixed point in X .

Proof: Let $\mathrm{x}_{0} \in \mathrm{X}$. By (i),there exist $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{X}$ such that

$$
\mathrm{A}^{2} \mathrm{x}_{1}=\mathrm{T}^{2} \mathrm{x}_{1} \text { and } \mathrm{B}^{2} \mathrm{x}_{2}=\mathrm{S}^{2} \mathrm{x}_{2}
$$

In this way, we can construct two sequences $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ and $\left\{y_{n}\right\}$ in X such that for $=1,2,3, \ldots$

$$
\begin{aligned}
& y_{2 n+1}=A^{2} x_{2 n}=T^{2} x_{2 n+1}, \\
& y_{2 n+2}=B^{2} x_{2 n+1}=S^{2} x_{2 n+2}
\end{aligned}
$$

Now using condition (iv-a) for any $z \in X$, with $x=x_{2 n}, y=x_{2 n+1}$, we get,
$\mathrm{F}\left\{\mathrm{M}\left(\mathrm{A}^{2} \mathrm{x}_{2 \mathrm{n}}, \mathrm{B}^{2} \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{z}, \mathrm{kt}\right)\right.$,
$\mathrm{M}\left(\mathrm{T}^{2} \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{~S}^{2} \mathrm{x}_{2 \mathrm{n}}, \mathrm{z}, \mathrm{t}\right)$,
$\mathrm{M}\left(\mathrm{A}^{2} \mathrm{x}_{2 \mathrm{n}}, \mathrm{T}^{2} \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{z}, \mathrm{t}\right)$,
$\mathrm{M}\left(\mathrm{B}^{2} \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{~T}^{2} \mathrm{x}_{2 n+1}, \mathrm{z}, \mathrm{kt}\right)$,
$\left.\mathrm{M}\left(\mathrm{T}^{2} \mathrm{x}_{2 \mathrm{n}+1}, \mathrm{~A}^{2} \mathrm{x}_{2 \mathrm{n}}, \mathrm{z}, \mathrm{t}\right)\right\} \geq 0$,
That is,
$F\left\{M\left(y_{2 n+1}, y_{2 n+2}, z, k t\right)\right.$,
$\mathrm{M}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{z}, \mathrm{t}\right)$,
$\mathrm{M}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}+1}, \mathrm{z}, \mathrm{t}\right)$,
$\mathrm{M}\left(\mathrm{y}_{2 \mathrm{n}+2}, \mathrm{y}_{2 \mathrm{n}+1}, \mathrm{z}, \mathrm{kt}\right)$,
$\left.\mathrm{M}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}+1}, \mathrm{z}, \mathrm{t}\right)\right\} \geq 0$.
By condition 2.3(a),
$M\left(y_{2 n+2}, y_{2 n+1}, z, k t\right) \geq M\left(y_{2 n+1}, y_{2 n}, z, t\right)$
Thus by lemma 2.5, $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ is a Cauchy sequence. By completeness of X, there exists p in X such that $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ converges to p . Hence its subsequence's $\left\{\mathrm{A}^{2} \mathrm{x}_{2 \mathrm{n}}\right\}$, $\left\{\mathrm{B}^{2} \mathrm{x}_{2 \mathrm{n}+1}\right\}$, $\left\{\mathrm{T}^{2} \mathrm{x}_{2 \mathrm{n}+1}\right\}$ and $\left\{S^{2} \mathbf{x}_{2 n+2}\right\}$ also converge to p .

By (iii) $\mathrm{T}(\mathrm{X})$ is complete, therefore, $p \in T(X)$, thus there exists $u \in X$ such that $\mathrm{p}=\mathrm{T}^{2} \mathrm{u}$.
Now put, $x=x_{2 n}$ and $y=u$ in (iv), we get for every $z \in X$,

$$
\mathrm{F}\left\{\mathrm{M}\left(\mathrm{~A}^{2} \mathrm{x}_{2 \mathrm{n}}, \mathrm{~B}^{2} \mathrm{u}, \mathrm{z}, \mathrm{kt}\right),\right.
$$

$\mathrm{M}\left(\mathrm{T}^{2} \mathrm{u}, \mathrm{S}^{2} \mathrm{x}_{2 \mathrm{n}}, \mathrm{z}, \mathrm{t}\right)$,
$\mathrm{M}\left(\mathrm{A}^{2} \mathrm{x}_{2 \mathrm{n}}, \mathrm{T}^{2} \mathrm{u}, \mathrm{z}, \mathrm{t}\right)$,
$\mathrm{M}\left(\mathrm{B}^{2} \mathrm{u}, \mathrm{T}^{2} \mathrm{u}, \mathrm{z}, \mathrm{kt}\right)$, $\left.\mathrm{M}\left(\mathrm{T}^{2} \mathrm{u}, \mathrm{A}^{2} \mathrm{x}_{2 \mathrm{n}}, \mathrm{z}, \mathrm{t}\right)\right\} \geq 0$,
Taking limit $\mathrm{n} \rightarrow \infty$, we get
F $\left\{\mathrm{M}\left(\mathrm{p}, \mathrm{B}^{2} \mathrm{u}, \mathrm{z}, \mathrm{kt}\right)\right.$,
$\mathrm{M}(\mathrm{p}, \mathrm{p}, \mathrm{z}, \mathrm{t})$,
$\mathrm{M}(\mathrm{p}, \mathrm{p}, \mathrm{z}, \mathrm{t})$,
$\mathrm{M}\left(\mathrm{B}^{2} \mathrm{u}, \mathrm{p}, \mathrm{z}, \mathrm{kt}\right)$,
$\mathrm{M}(\mathrm{p}, \mathrm{p}, \mathrm{z}, \mathrm{t})\} \geq 0$,
$\mathrm{F}\left\{\mathrm{M}\left(\mathrm{p}, \mathrm{B}^{2} \mathrm{u}, \mathrm{z}, \mathrm{kt}\right), 1,1\right.$,

$$
\left.\mathrm{M}\left(\mathrm{~B}^{2} \mathrm{u}, \mathrm{p}, \mathrm{z}, \mathrm{kt}\right), 1\right\} \geq 0
$$

So that by 2.3(b),
$\left.\mathrm{M}\left(\mathrm{B}^{2} \mathrm{u}, \mathrm{p}, \mathrm{z}, \mathrm{kt}\right), 1\right\} \geq 1$
Hence, $p=B^{2} u=T^{2} u$.
Using weak ${ }^{* *}$ commutatively of the pair
(T, B), we have

$$
\begin{aligned}
& M\left(T^{2} B^{2} u, B^{2} T^{2} u, z, t\right) \\
& \geq M\left(T^{2} B u, B^{2} T u, z, t\right) \\
& \quad \geq M\left(\operatorname{TB}^{2} u, B^{2} u, z, t\right) \\
& \quad \geq M(T B u, B T u, z, t) \\
& \geq M\left(T^{2} u, B^{2} u, z, t\right)
\end{aligned}
$$

Hence, $T^{2} B^{2} u=T^{2} S^{2} u$, therefore by (3.1)

$$
\begin{equation*}
\mathrm{T}^{2} \mathrm{p}=\mathrm{B}^{2} \mathrm{p} \tag{3.2}
\end{equation*}
$$

Now we put $x=x_{2 n}$ and $y=p$ in (iv), we get for every $\mathrm{z} \in \mathrm{X}$,

$$
\begin{gathered}
F\left\{\begin{array}{c}
\mathrm{M}\left(\mathrm{~A}^{2} \mathrm{x}_{2 n}, \mathrm{~B}^{2} \mathrm{p}, \mathrm{z}, \mathrm{kt}\right), \\
\mathrm{M}\left(\mathrm{~T}^{2} \mathrm{p}, \mathrm{~S}^{2} \mathrm{x}_{2 n}, \mathrm{z}, \mathrm{t}\right), \\
\mathrm{M}\left(\mathrm{~A}^{2} \mathrm{x}_{2 n}, \mathrm{~T}^{2} \mathrm{p}, \mathrm{z}, \mathrm{t}\right), \\
\mathrm{M}\left(\mathrm{~B}^{2} \mathrm{p}, \mathrm{~T}^{2} \mathrm{p}, \mathrm{z}, \mathrm{kt}\right), \\
\left.\mathrm{M}\left(\mathrm{~T}^{2} \mathrm{p}, \mathrm{~A}^{2} \mathrm{x}_{2 n}, \mathrm{z}, \mathrm{t}\right)\right\} \geq 0, \\
\text { Taking limit } \mathrm{n} \rightarrow \infty, \text { we get } \\
\mathrm{F}\{
\end{array} \mathrm{M}\left(\mathrm{p}, \mathrm{~B}^{2} \mathrm{p}, \mathrm{z}, \mathrm{kt}\right),\right. \\
\mathrm{M}\left(\mathrm{~T}^{2} \mathrm{p}, \mathrm{p}, \mathrm{z}, \mathrm{t}\right), \\
\mathrm{M}\left(\mathrm{p}, \mathrm{~T}^{2} \mathrm{p}, \mathrm{z}, \mathrm{t}\right), \\
\mathrm{M}\left(\mathrm{~B}^{2} \mathrm{p}, \mathrm{~T}^{2} \mathrm{p}, \mathrm{z}, \mathrm{kt}\right), \\
\left.\mathrm{M}\left(\mathrm{~T}^{2} \mathrm{p}, \mathrm{p}, \mathrm{z}, \mathrm{t}\right)\right\} \geq 0,
\end{gathered}
$$

This gives by using (3.2)
$\mathrm{F}\left\{\mathrm{M}\left(\mathrm{p}, \mathrm{B}^{2} \mathrm{p}, \mathrm{z}, \mathrm{kt}\right)\right.$, M ($\left.B^{2} p, p, z, t\right)$, $\mathrm{M}\left(\mathrm{p}, \mathrm{B}^{2} \mathrm{p}, \mathrm{z}, \mathrm{t}\right)$, $\left.1, \mathrm{M}\left(\mathrm{B}^{2} \mathrm{p}, \mathrm{p}, \mathrm{z}, \mathrm{t}\right)\right\} \geq 0$.
Since F is non decreasing in first argument, we have

$$
\begin{aligned}
& \mathrm{F}\left\{\mathrm{M}\left(\mathrm{p}, \mathrm{~B}^{2} \mathrm{p}, \mathrm{z}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{~B}^{2} \mathrm{p}, \mathrm{p}, \mathrm{z}, \mathrm{t}\right)\right. \\
& \left.\quad \mathrm{M}\left(\mathrm{p}, \mathrm{~B}^{2} \mathrm{p}, \mathrm{z}, \mathrm{t}\right), 1, \mathrm{M}\left(\mathrm{~B}^{2} \mathrm{p}, \mathrm{p}, \mathrm{z}, \mathrm{t}\right)\right\} \\
& \geq 0 .
\end{aligned}
$$

Therefore by 7-2-3(b), we have
$\mathrm{M}\left(\mathrm{p}, \mathrm{B}^{2} \mathrm{p}, \quad \mathrm{z}, \mathrm{t}\right) \geq 1$
Hence, $p=B^{2} p=T^{2} p$
Since, $B(X) \subset S(X)$, there exists $v \in X$ such that
$p=B^{2} p=S^{2} v$.
Put $x=v$ and $y=p$ in (iv), we get
$\mathrm{F}\left\{\mathrm{M}\left(\mathrm{A}^{2} \mathrm{v}, \mathrm{B}^{2} \mathrm{p}, \mathrm{z}, \mathrm{kt}\right)\right.$,
$\mathrm{M}\left(\mathrm{T}^{2} \mathrm{p}, \mathrm{S}^{2} \mathrm{v}, \mathrm{z}, \mathrm{t}\right)$,
$\mathrm{M}\left(\mathrm{A}^{2} \mathrm{v}, \mathrm{T}^{2} \mathrm{p}, \mathrm{z}, \mathrm{t}\right)$,
$\mathrm{M}\left(\mathrm{B}^{2} \mathrm{p}, \mathrm{T}^{2} \mathrm{p}, \mathrm{z}, \mathrm{kt}\right)$,
$\left.\mathrm{M}\left(\mathrm{T}^{2} \mathrm{p}, \mathrm{A}^{2} \mathrm{p}, \mathrm{z}, \mathrm{t}\right)\right\} \geq 0$,
That is,

$$
\begin{gathered}
\mathrm{F}\left\{\mathrm{M}\left(\mathrm{~A}^{2} \mathrm{v}, \mathrm{p}, \mathrm{z}, \mathrm{kt}\right),\right. \\
\mathrm{M}(\mathrm{p}, \mathrm{p}, \mathrm{z}, \mathrm{t}),
\end{gathered}
$$

$\mathrm{M}\left(\mathrm{A}^{2} \mathrm{v}, \mathrm{p}, \mathrm{z}, \mathrm{t}\right)$,
$\mathrm{M}(\mathrm{p}, \mathrm{p}, \mathrm{z}, \mathrm{kt})$,
$\left.\mathrm{M}\left(\mathrm{p}, \mathrm{A}^{2} \mathrm{p}, \mathrm{z}, \mathrm{t}\right)\right\} \geq 0$,
Since F is non decreasing in first argument, we have

F $\left\{\mathrm{M}\left(\mathrm{A}^{2} \mathrm{v}, \mathrm{p}, \mathrm{z}, \mathrm{t}\right), 1, \mathrm{M}\left(\mathrm{A}^{2} \mathrm{v}, \mathrm{p}, \mathrm{z}, \mathrm{t}\right)\right.$, $\left.1, \mathrm{M}\left(\mathrm{p}, \mathrm{A}^{2} \mathrm{p}, \mathrm{z}, \mathrm{t}\right)\right\} \geq 0$,
Therefore by 7-2-3(b), we have

$$
\begin{equation*}
\mathrm{M}\left(\mathrm{p}, \mathrm{~A}^{2} \mathrm{v}, \mathrm{z}, \mathrm{t}\right) \geq 1 \tag{3.4}
\end{equation*}
$$

Hence, $p=A^{2} v=S^{2} v$.
Using weak** commutatively of the pair (S, A), we have

$$
\begin{aligned}
& \mathrm{M}\left(\mathrm{~S}^{2} \mathrm{~A}^{2} v, A^{2} S^{2} v, \mathrm{z}, \mathrm{t}\right) \\
& \geq \mathrm{M}\left(\mathrm{~S}^{2} A v, A^{2} S v, \mathrm{z}, \mathrm{t}\right) \\
& \geq \mathrm{M}\left(\mathrm{SA}^{2} v, A S^{2} v, \mathrm{z}, \mathrm{t}\right) \\
& \geq \mathrm{M}\left(\mathrm{SAv}^{2}, A S v, \mathrm{z}, \mathrm{t}\right) \\
& \geq \mathrm{M}\left(\mathrm{~S}^{2} v, A^{2} v, \mathrm{z}, \mathrm{t}\right)
\end{aligned}
$$

Hence, $S^{2} A^{2} v=A^{2} S^{2} v$, therefore by (3.4)

$$
\begin{equation*}
S^{2} p=A^{2} p \tag{3.5}
\end{equation*}
$$

Now we put $x=p$ and $y=x_{2 n+1}$ in (iv), we get for every $\mathrm{z} \in \mathrm{X}$,

$$
\begin{aligned}
& \mathrm{F}\{ \mathrm{M}\left(\mathrm{~A}^{2} \mathrm{p}, \mathrm{~B}^{2} \mathrm{x}_{2 n+1}, \mathrm{z}, \mathrm{kt}\right), \\
& \mathrm{M}\left(\mathrm{~T}^{2} \mathrm{x}_{2 n+1}, \mathrm{~S}^{2} \mathrm{p}, \mathrm{z}, \mathrm{t}\right), \\
& \mathrm{M}\left(\mathrm{~A}^{2} \mathrm{p}, \mathrm{~T}^{2} \mathrm{x}_{2 n+1}, \mathrm{z}, \mathrm{t}\right) \\
& \mathrm{M}\left(\mathrm{~B}^{2} \mathrm{x}_{2 n+1}, \mathrm{~T}^{2} \mathrm{x}_{2 n+1}, \mathrm{z}, \mathrm{kt}\right), \\
&\left.\mathrm{M}\left(\mathrm{~T}^{2} \mathrm{x}_{2 n+1}, \mathrm{~A}^{2} \mathrm{p}, \mathrm{z}, \mathrm{t}\right)\right\} \geq 0,
\end{aligned}
$$

Taking limit $\mathrm{n} \rightarrow \infty$, we get

$$
\mathrm{F}\left\{\mathrm{M}\left(\mathrm{~A}^{2} \mathrm{p}, \mathrm{p}, \mathrm{z}, \mathrm{kt}\right),\right.
$$

$\mathrm{M}\left(\mathrm{p}, \mathrm{S}^{2} \mathrm{p}, \mathrm{z}, \mathrm{t}\right)$,
$\mathrm{M}\left(\mathrm{A}^{2} \mathrm{p}, \mathrm{p}, \mathrm{z}, \mathrm{t}\right)$,
M (p, p, z, kt),
$\left.\mathrm{M}\left(\mathrm{p}, \mathrm{A}^{2} \mathrm{p}, \mathrm{z}, \mathrm{t}\right)\right\} \geq 0$,
Using (3.5), we have

$$
\begin{gathered}
\mathrm{F}\left\{\mathrm{M}\left(\mathrm{~A}^{2} \mathrm{p}, \mathrm{p}, \mathrm{z}, \mathrm{kt}\right),\right. \\
\mathrm{M}\left(\mathrm{p}, \mathrm{~A}^{2} \mathrm{p}, \mathrm{z}, \mathrm{t}\right) \\
\mathrm{M}\left(\mathrm{~A}^{2} \mathrm{p}, \mathrm{p}, \mathrm{z}, \mathrm{t}\right) \\
\left.1, \mathrm{M}\left(\mathrm{p}, \mathrm{~A}^{2} \mathrm{p}, \mathrm{z}, \mathrm{t}\right)\right\} \geq 0,
\end{gathered}
$$

Since F is non decreasing in first argument, we have

F $\left\{\mathrm{M}\left(\mathrm{A}^{2} \mathrm{p}, \mathrm{p}, \mathrm{z}, \mathrm{t}\right)\right.$,
$\mathrm{M}\left(\mathrm{p}, \mathrm{A}^{2} \mathrm{p}, \mathrm{z}, \mathrm{t}\right)$, $\mathrm{M}\left(\mathrm{A}^{2} \mathrm{p}, \mathrm{p}, \mathrm{z}, \mathrm{t}\right)$, $\left.1, \mathrm{M}\left(\mathrm{p}, \mathrm{A}^{2} \mathrm{p}, \mathrm{z}, \mathrm{t}\right)\right\} \geq 0$,
Therefore by 7-2-3(b), we have $\mathrm{M}\left(\mathrm{p}, \mathrm{A}^{2} \mathrm{p}, \mathrm{z}, \mathrm{t}\right) \geq 1$
Hence, $p=A^{2} p=S^{2} p$,
Therefore by (3.3),

$$
\begin{equation*}
\mathrm{p}=\mathrm{A}^{2} \mathrm{p}=\mathrm{B}^{2} \mathrm{p}=\mathrm{S}^{2} \mathrm{p}=\mathrm{T}^{2} \mathrm{p} \tag{3.6}
\end{equation*}
$$

Now put $x=A p$ and $y=p$ in (iv), we get

$$
\mathrm{F}\left\{\mathrm{M}\left(\mathrm{~A}^{2} \mathrm{Ap}, \mathrm{~B}^{2} \mathrm{p}, \mathrm{z}, \mathrm{kt}\right)\right.
$$

$\mathrm{M}\left(\mathrm{T}^{2} \mathrm{p}, \mathrm{S}^{2} \mathrm{Ap}, \mathrm{z}, \mathrm{t}\right)$,
$\mathrm{M}\left(\mathrm{A}^{2} \mathrm{Ap}, \mathrm{T}^{2} \mathrm{p}, \mathrm{z}, \mathrm{t}\right)$,
$\mathrm{M}\left(\mathrm{B}^{2} \mathrm{p}, \mathrm{T}^{2} \mathrm{p}, \mathrm{z}, \mathrm{kt}\right)$,
$\left.\mathrm{M}\left(\mathrm{T}^{2} \mathrm{p}, \mathrm{A}^{2} \mathrm{Ap}, \mathrm{z}, \mathrm{t}\right)\right\} \geq 0$,

Since (A, S) is weak** commutative, therefore $S^{2} \mathrm{Ap}=\mathrm{AS}^{2} \mathrm{p}$, we have using (3.6)

F\{M(Ap, p, z, kt),
M (p, Ap, z, t),
M (Ap, p, z, t),
M (p, p, z, kt),
$\mathrm{M}(\mathrm{p}, \mathrm{Ap}, \mathrm{z}, \mathrm{t})\} \geq 0$,
That is
$\mathrm{F}\{\mathrm{M}(\mathrm{Ap}, \mathrm{p}, \mathrm{z}, \mathrm{kt}), \mathrm{M}(\mathrm{p}, \mathrm{Ap}, \mathrm{z}, \mathrm{t})$, M (Ap, p,z,t), 1,M (p, Ap, z,t) $\} \geq 0$,
Since F is non decreasing in first argument, we have
$\mathrm{F}\{\mathrm{M}(\mathrm{Ap}, \mathrm{p}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{p}, \mathrm{Ap}, \mathrm{z}, \mathrm{t})$, $\mathrm{M}(\mathrm{Ap}, \mathrm{p}, \mathrm{z}, \mathrm{t}), 1, \mathrm{M}(\mathrm{p}, \mathrm{Ap}, \mathrm{z}, \mathrm{t})\} \geq 0$,
Therefore by 2.3(b), we have

$$
\mathrm{M}(\mathrm{p}, \mathrm{Ap}, \mathrm{z}, \mathrm{t})\} \geq 1
$$

Hence, $p=A p$. Similarly we can show that $p=B p, p=T p, p=S p$. This shows that p is common fixed point of $\mathrm{A}, \mathrm{B}, \mathrm{T}$ and S .

Uniqueness: Let p and q be two common fixed points of $\mathrm{A}, \mathrm{B}, \mathrm{T}$ and S .
Put $x=p$ and $y=q$ in (iv) we get
$\mathrm{F}\left\{\mathrm{M}\left(\mathrm{A}^{2} \mathrm{p}, \mathrm{B}^{2} \mathrm{q}, \mathrm{z}, \mathrm{kt}\right)\right.$,
$\mathrm{M}\left(\mathrm{T}^{2} \mathrm{q}, \mathrm{S}^{2} \mathrm{p}, \mathrm{z}, \mathrm{t}\right)$,
$\mathrm{M}\left(\mathrm{A}^{2} \mathrm{p}, \mathrm{T}^{2} \mathrm{q}, \mathrm{z}, \mathrm{t}\right)$,
$\mathrm{M}\left(\mathrm{B}^{2} \mathrm{q}, \mathrm{T}^{2} \mathrm{q}, \mathrm{z}, \mathrm{kt}\right)$,
$\left.\mathrm{M}\left(\mathrm{T}^{2} \mathrm{q}, \mathrm{A}^{2} \mathrm{p}, \mathrm{z}, \mathrm{t}\right)\right\} \geq 0$,
Using (3.6) we have
$\mathrm{F}\{\mathrm{M}(\mathrm{p}, \mathrm{q}, \mathrm{z}, \mathrm{kt})$,
$\mathrm{M}(\mathrm{q}, \mathrm{p}, \mathrm{z}, \mathrm{t})$,
$\mathrm{M}(\mathrm{p}, \mathrm{q}, \mathrm{z}, \mathrm{t})$,
M (q, q, z, kt),
$\mathrm{M}(\mathrm{q}, \mathrm{p}, \mathrm{z}, \mathrm{t})\} \geq 0$,
That is

$$
\mathrm{F}\{\mathrm{M}(\mathrm{p}, \mathrm{q}, \mathrm{z}, \mathrm{kt}), \mathrm{M}(\mathrm{q}, \mathrm{p}, \mathrm{z}, \mathrm{t}),
$$

$\mathrm{M}(\mathrm{p}, \mathrm{q}, \mathrm{z}, \mathrm{t}), 1, \mathrm{M}(\mathrm{q}, \mathrm{p}, \mathrm{z}, \mathrm{t})\} \geq 0$,
Since F is non decreasing in first argument, we have

$$
\mathrm{F}\{\mathrm{M}(\mathrm{p}, \mathrm{q}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{q}, \mathrm{p}, \mathrm{z}, \mathrm{t}),
$$

$\mathrm{M}(\mathrm{p}, \mathrm{q}, \mathrm{z}, \mathrm{t}), 1, \mathrm{M}(\mathrm{q}, \mathrm{p}, \mathrm{z}, \mathrm{t})\} \geq 0$,
Therefore
$\mathrm{M}(\mathrm{q}, \mathrm{p}, \mathrm{z}, \mathrm{t})\} \geq 0$
Hence, $\mathrm{p}=\mathrm{q}$. This proves that $\mathrm{A}, \mathrm{B}, \mathrm{T}$ and S have unique common fixed point.
By taking $\mathrm{A}=\mathrm{UV}$ and $\mathrm{B}=\mathrm{WP}$ in the proof of theorem 3, we have the following result.

Theorem 4. Let U, V, W, P, T and S be self mappings on a complete fuzzy 2-metric space (X, M, *) satisfying the following
(i) $\mathrm{UV}(\mathrm{X}) \subset \mathrm{T}(\mathrm{X}), \mathrm{WP}(\mathrm{X}) \subset \mathrm{S}(\mathrm{X})$,
(ii) The pairs (UV,S) and (WP,T) are weak** commutative.
(iii) $T(X)$ and $S(X)$ are complete.
(iv) For some $\mathrm{F} \in \Phi$, there exists $\mathrm{k} \in(0,1)$ such that for all x ,
$y, z \in X$ and $t>0$,
$\mathrm{F}\left\{\mathrm{M}\left(\mathrm{U}^{2} \mathrm{~V}^{2} x, W^{2} \mathrm{P}^{2} \mathrm{y}, \mathrm{z}, \mathrm{kt}\right)\right.$,
$\mathrm{M}\left(\mathrm{T}^{2} \mathrm{y}, \mathrm{S}^{2} \mathrm{x}, \mathrm{z}, \mathrm{t}\right)$,
$\mathrm{M}\left(\mathrm{U}^{2} \mathrm{~V}^{2} \mathrm{x}, \mathrm{T}^{2} \mathrm{y}, \mathrm{z}, \mathrm{t}\right)$,
$\mathrm{M}\left(\mathrm{W}^{2} \mathrm{P}^{2} \mathrm{y}, \mathrm{T}^{2} \mathrm{y}, \mathrm{z}, \mathrm{kt}\right)$,
$\left.\mathrm{M}\left(\mathrm{T}^{2} \mathrm{y}, \mathrm{U}^{2} \mathrm{~V}^{2} \mathrm{x}, \mathrm{z}, \mathrm{t}\right)\right\} \geq 0$

Then $\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{P}, \mathrm{T}$ and S have a unique common fixed point in X .

REFERENCES

[1]. Cho, Y.J. Pathak, H.K. Kang, S.M. and Jung, J.S: Common fixed points of compatible maps of type (β) on fuzzy metric spaces, Fuzzy Sets and Systems, 93(1998) 99-111.
[2]. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy sets and Systems, 64(1994), 395-399.
[3]. Jungck G., and Rhoades, B.E.: Fixed point for set valued functions without continuity, Ind. J. Pure and Appl. Math. 29(3) (1998), 227-238.
[4]. Kramosil, J. And Michalek, J. Fuzzy metric and statistical metric spaces, Kybernetica, 11(1975), 330-334.
[5]. Pathak, H.K., Weak* commuting mappings and fixed points, Indian J. Pure Appl. Math. 17(1986), 201-211.
[6]. Pathak, H.K., Weak** commuting mappings and fixed point (II), J. Indian Acad. Math. 15(1993), 106-116.
[7]. Popa, V., Fixed points for non-subjective expansions mappings satisfying an implicit relation, Bul. Sitni. Univ. Baia Mare Ser. B Fasc. Mat. Inform 18(2002), 105-108.
[8]. Popa, V., Some fixed point theorems for weakly compatible mappings, Radovi Mathematics, 10(2001), 245-252.
[9]. Seesa, S., On a weak commutatively of mappings I fixed point considerations, Pabl. Inst. Math., 32 (46) (1982), 149-153
[10]. Sharma, Sushil : Fixed point theorems for fuzzy mappings satisfying an implicit relation, East Asian Math.J. Vol. 18, No. 2 (2002), 225-233.
[11]. Singh, B., and Jain, S., Semi compatibility and fixed point theorems in fuzzy metric space using implicit relation, International Journal of Mathematics and Mathematical Sciences, (2005), 2617-2629.
[12]. Vasuki, R., Common fixed points for Rweakly commuting maps in fuzzy metric spaces, Indian J. Pure. Appl. Math. 30(1999), 419-423.

